Free vibrations of a strain gradient beam by the method of initial values

نویسنده

  • R. C. Batra
چکیده

We extend the application of the method of initial values (also known as the transfer matrix method) to find frequencies of free vibrations of a strain-gradient-dependent Euler–Bernoulli beam (EBB) under different boundary conditions at the two end faces of the beam. For the classical EBB, we find the exact matricant or the carry-over matrix but it is numerically evaluated for the strain-gradient-dependent EBB. For the numerically evaluated matricant, it is found that ten iterations give converged values of the first six frequencies for the classical and the strain-gradient-dependent EBB. For the strain-gradient EBB, the sixth-order ordinary differential equation for the lateral deflection and three boundary conditions at each end have been derived by using the Hamilton principle. The material characteristic length is found to noticeably affect frequencies of free vibrations. Thus, the difference between frequencies of the classical and the strain-gradient-dependent EBB can be used to determine the value of the material characteristic length for a nanobeam for which length scale effects are believed to be dominant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Semi-analytical Solution for Flexural Vibration of Micro Beams Based on the Strain Gradient Theory

In this paper, the flexural free vibrations of three dimensional micro beams are investigated based on strain gradient theory. The most general form of the strain gradient theory which contains five higher-order material constants has been applied to the micro beam to take the small-scale effects into account. Having considered the Euler-Bernoulli beam model, governing equations of motion are w...

متن کامل

Assessing different nonlinear analysis methods for free vibrations of initially stressed composite laminated plates

In this paper, the nonlinear free vibrations of thin symmetric and non-symmetric cross-ply composite plates subjected to biaxial initial stresses are investigated. Because of their excellent properties such as specific strength and specific stiffness, composite plates have wide applications in aerospace and mechanical structures. Based on Von-Karman's strain-displacement relations and using Gal...

متن کامل

Small Scale Effects on the Large Amplitude Nonlinear Vibrations of Multilayer Functionally Graded Composite Nanobeams Reinforced with Graphene-Nanoplatelets

   The main purpose of the present investigation is to analyze more comprehensively the size-dependent nonlinear free vibration response of multilayer functionally graded graphene platelet-reinforced composite (GPLRC) nanobeams. As a consequence, both of the hardening stiffness and softening stiffness of size effect are taken into consideration by implementation of the nonlocal str...

متن کامل

Size-Dependent Forced Vibration Analysis of Three Nonlocal Strain Gradient Beam Models with Surface Effects Subjected to Moving Harmonic Loads

The forced vibration behaviors are examined for nonlocal strain gradient nanobeams with surface effects subjected to a moving harmonic load travelling with a constant velocity in terms of three beam models namely, the Euler-Bernoulli, Timoshenko and modified Timoshenko beam models. The modification for nonlocal strain gradient Timoshenko nanobeams is exerted to the constitutive equations by exc...

متن کامل

Investigation of Strain Gradient Theory for the Analysis of Free Linear Vibration of Nano Truncated Conical Shell

In this paper the nano conical shell model is developed based on modified strain gradient theory. The governing equations of the nano truncated conical shell are derived using the FSDT, and the size parameters through modified strain gradient theory have been taken into account. Hamilton’s principle is used to obtain the governing equations, and the shell’s equations of motion are derived with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012